
Teaching Software Engineering Fundamentals in an Introductory
Computer Programming Course

Eduardo Santana de Almeida1, Ivan do Carmo Machado1,
Carlos Vinı́cius Andrade Silva1, Gecynalda Soares da Silva Gomes2

1Computer Science Department, Federal University of Bahia – Salvador – Brazil

2Statistics Department, Federal University of Bahia – Salvador – BA – Brazil

{esa,ivanmachado,cvas}@dcc.ufba.br, gecynalda@yahoo.com

Abstract. Programming is an important part of software development and well-
educated professionals is critical for the industry needs. However, in general, the
computer programming courses are just focused on the language, constructions, struc-
tures, and so on. In this paper, we present a new approach to teach an introductory
computer programming course based on software engineering fundamentals. The ap-
proach has been applied since 2009 in our university and the results are promising.

1. Introduction
Software-intensive systems have become increasingly essential parts of everyday activity and of
business in the global economy and they can be found in products ranging from mobile phones
to space shuttles [Shaw 2000]. It means a trend in software development toward bigger and
more complex systems [Boehm 2006]. This is due in part to the fact that computers become
more powerful every year, leading users to expect more from them. Moreover, this trend has
also been influenced by the expanding use of the Internet for exchanging all kinds of information
(texts, pictures, multimedia, etc). Thus, some characteristics are strongly wished by managers,
software engineers, and users, such as software that is better adapted to their needs, with short
time-to-market and low cost. However, the quality of this software depends on an adequate
supply of proficient and up-to-date software engineers.

Nevertheless, software engineers are educated in the traditional ways and it has not pro-
duced the supply and quality of developers needed to satisfy the growing demand [Shaw 2000].
In general, the universities offer a general software engineering course spanning several issues
related to software development such as project management, requirements engineering, pro-
cesses models, and so on [Lutz and Bagert 2006]. On the other hand, the introductory courses
such as the ones related to computer programming are not linked to the software engineering
ones making harder to students understand in a practical way important concepts and funda-
mentals related to software development.

In this sense, we propose a new approach to teach introductory computer programming
courses. Our assumption is that students can learn important software engineering fundamentals
embedded in this kind of course through practical projects.

2. Software Engineering Fundamentals
The software engineering (SE) area has been investigated for more than four decades and several
efforts were developed to define a set of fundamentals [Selby 2007] and body of knowledge for
the field [Abran et al. 2004]. In our approach, we considered all of them as important, but for
the specific proposal, it is based on:

• Collaborative work in small teams: software development is a complex activity to
be performed by someone in an isolated way and people with different skills should be
considered. Moreover, the idea is to divide the problem into smaller pieces and assign it
for tightly proactive focused teams.



• Iterative development and Feedback: the idea is to develop software through repeated
cycles and in smaller portions at a time (incremental way) producing functional software
at each iteration. Moreover, during the iterations, feedback is incorporated to improve
its features in next releases.
• Modularity: the goal is to decouple design decisions that are likely to change so that

they can be changed independently making easier maintenance tasks [Parnas 1979].
• Configuration Management: it identifies the configuration of software at distinct

points in time to control changes and maintain the integrity and traceability of the con-
figuration throughout the software lifecycle.
• Documentation: software documentation can reduce the time and effort to develop new

software, increase the ease of porting software to different platforms, and help users to
understand software more easily.
• Testing: testing activities support quality assurance by executing the software being

studied to gather information about the nature of that software [Harrold 2000].
• Refactoring: is a disciplined technique for restructuring an existing piece of code, mod-

ifying its internal structure without changing its external behavior presenting benefits
related to maintainability and extensibility [Fowler et al. 1999].

3. The Approach
3.1. Structure
Our initial challenge was to define an introductory computer programming course (held at the
2nd semester of the 1st year in a computer science course) based on a set of SE principles
once, in general, the computer programming courses are just focused on the language itself
discussing its features, constructions, and so on. We believe that students should be taught a
proper SE mindset from the beginning of their computer programming education, in this way,
their perception for the concepts in future SE courses will be faster as well as their future
connection with other important fundamentals.

The computer programming course in the C language is offered after an initial course on
computer programming introduction using Pascal (1st semester, 2 classes/week, in a total of 68
hours/semester). The course follows the classical language book [Kernighan and Ritchie 1988]
and is composed of sixteen classes in the semester (each class means 3 hours/week) as showed
in Table 1. During the classes at the Lab conducted by the professor and the tutor1, the concepts
are explained (30-60 minutes) and after that, a class assignment (hands-on session) divided in
3-5 questions is performed to practice the concepts presented.

3.2. Instrumentation
In order to support the proposed approach, we defined a set of tools to be used in the course:

• Wiki system: It is used to organize all the instruments (homework, reading list, spread-
sheet links), the activities, and also to keep track of all changes that have been made
along the course. It is also used to access data from previous semesters in order to
understand the changes performed during the entire course editions;
• Mailing list: It is used as a communication channel among students, the tutor and the

professor to discuss any topic regarding the course;
• Version Control System: It is used to manage all the students produced artifacts on

the group work activity. Moreover, it allows the data collection process to evaluate the
students, their motivation and participation on each iteration;

1In each semester, a Ph.D. student was selected to act as a teaching assistant, in this study named tutor.



Table 1. Course structure.
CLASS TOPICS

1 C overview • Expressions • Statements • Class assignment
2 Arrays • Class assignment
3 Multidimensional arrays • Strings • Class assignment
4 Functions • Class assignment
5 Recursive Functions • Class assignment
6 Class assignment about the previous topics
7 Pointers • Class assignment
8 Dynamic Allocations • Class assignment
9 Class assignment about pointers
10 Exam
11 Structure, Union, Enumerations• User-defined Types • Class assignment
12 File I/O • Console I/O • Class assignment
13 Modularity • 1st Project phase start
14 Project presentation • Testing • 2nd Project phase start
15 Project presentation • Testing • 3rd Project phase start
16 Final Project presentation

• Web Testing Spreadsheet: It is used to organize and classify all the defects identified
during each iteration phase. It is important for students and professors understand the
quality of the produced software as well as the pending issues to be fixed;
• Survey tool: We collect sensitive data using a survey tool to send two forms to students:

the prior was applied in order to gather information about their background in program-
ming; and the latter to obtain feedback after running the proposed course structure.

3.3. Approach Steps
In the class 13, the project course starts and the approach based on the principles defined in
Section 2 is executed as follows:

1. Initially, the students are divided into teams, each composed of four/five students (col-
laborative work in small teams). We do not define a formal way to set the teams
[Scott and Cross 1995] and in our case, the best students identified during the classes
and exam are put in separated teams and work as the project leader. The remaining ones
are signed to the groups in a random way. However, it is important to try to balance
the other good students in different teams. In addition, the professor and tutor explain
the role of a project leader and his importance in a software development project for the
students selected for this role.

2. Next, the professor presents the project specification for each team. The specification
is part of a small information system chosen by the professor and is composed of func-
tional requirements with operations to create, remove, retrieve and update entities, and
present several types of queries.

3. Based on the guidance from the professor and tutor, the students create the repository
structure for their team (Configuration Management) and the technical leader starts mod-
ularizing the specification defining the .h files and functions to be developed (Modu-
larity and Documentation).

4. The students team have one week to work in the specification (Iterative development)
and make the project presentation. During the presentation (30-40 minutes), the students
should present the specification under their responsibility, explain the source code and
decisions taken, and show the running system. In this presentation, the professor and
tutor ask questions for each participant in the team to evaluate their participation in
the project and present feedback related to the implementation. The students have to
incorporate the feedback if applicable.



5. After the presentation, the professor explains some basic notions about unit and system
testing [Harrold 2000] and based on this, he shows a web spreadsheet2 to report the
defects found. This is composed of fields to describe the defects summary, steps to
reproduce them, severity, owner, and so on. Thus, each team has an assignment to test
the system (with a 3-day deadline) developed by another one and register the defects
found (Testing). The professor and tutor make also the testing and report the defects for
each team. Finally, the students’ team has two days to fix the defect reported.

6. In the following class, the professor starts the second iteration for the project. In this
iteration, each team has to work with another one on a new system specification, e.g.
team 1 works together with team 2 in one specification and teams 3, 4, and 5 in another
one. For this iteration, the professor adds new requirements for the system and make
them integrated. As an example, let us consider a system under the university domain
with entities such as professors, departments, areas (computer science, math, biology,
etc.), courses (data structures, databases, etc.) and students. Thus, in this iteration, team
1 and team 2 have to work with professors and departments, team 3, 4, 5 with areas,
courses and students. In this sense, each team has to change their previous iteration
source code, add new features, improve the implementation and so on (Refactoring).

7. After the implementation, both teams have to present the running system, answer pro-
fessor’s questions, test the different implementations (team 1 and 2 test team 3, 4, 5 and
vice-versa) and fix the defects.

8. In the last iteration, the professor defines a new specification for the system connecting
all the previous parts and adds new requirements. In this iteration, all the teams have
to work together as one team on the specification, test the whole system, and make the
final presentation.

3.4. Additional Skills practiced
Besides the software engineering fundamentals, the students may learn several important skills
related to software development:

Leadership and Management. During the project, some students have to work as
technical leaders and coordinate the activities in their teams. Moreover, they have to manage
the deadlines and make sure that everybody is working on the project.

Requirements understanding. Based on the specifications defined by the professor and
tutor, the students have to understand them, interact with the customers (professor and tutor) to
clarify issues and make the design, implementation, and testing.

Defects assignments and prioritization. In the testing phase in the project, the stu-
dents have to assign the defects for each member in the group and set the priorities to fix them
according to the defined deadlines.

4. A Preliminary Evaluation
We introduced the approach in our university in 2009.2 period and it has being applied since
then. In this study, we consider data gathered from semesters 2009.2, 2010.1 and 2010.23. Table
2 shows some quantitative information about the projects developed by the students.

The set of evaluated students indeed does not represent the initial amount of enrolled
studies. From the initial amount of enrolled students (103), 33 did not complete the course,
since some of them either dropped it or gave up on the classes and hence stopped taking tests.
Some students (13) failed to reach the minimum required score to be approved in the course.
We decided not to include these in the analysis. Hence, the final set contains 57 students.

2The platform provided by Google - http://code.google.com/ - was used as the project bug report system.
3http://disciplinas.dcc.ufba.br/MATA57/20092‖20101‖20102



Table 2. Case studies using the approach.
PERIOD APPLICATION DEVELOPED ENROLLED STUDENTS EVALUATED STUDENTS

2009.2 - class 1 Hospital Management System 17
2009.2 - class 2 University Management System 13 14

2010.1 - class 1 Bank System 25
2010.1 - class 2 Sports Competition System 19 20

2010.2 - class 1 Hospital Management System 17
2010.2 - class 2 University Management System 12 23

This preliminary evaluation was aimed at understanding how the students consider this
new educational approach. Data was collected through questionnaires, applied at the end of
each semester, as a kind of feedback, in which students had to rate the following statements on
a pre-defined scale, as next explained. These are the independent variables of our analysis.

• Course Content Evaluation: knowledge c: prior students’ knowledge on C pro-
gramming language; course expectancy: the course met students’ expectancy;
course content: the course content met students’ needs; course difficulty: difficulty
level of the course; material quality: evaluate if audiovisual and teaching aids were
useful; interaction tut prof: readiness to solve student’s problems; course length: how
adequate the course length was; content schedule: the predefined schedule suffices re-
garding the content; aplic nec interest: applicable to students’ needs and interests in the
course;
• Teaching Evaluation: Both Tutor and Professor were evaluated according to the items:

punctuality: punctuality and regularity; knowledge: subject knowledge; didactic:
preparation for the class, interest in teaching the class; communication: communication
skills, encouraging students to participate; doubts: ability to clear student’s doubts;
schedule: the predefined schedule was followed accordingly;

The students were surveyed with questions representing the aforementioned items.
These were presented using a Likert-like scale, with values ascending ranging from 0 to 10.
Data gathered from the questionnaires were analyzed through the SPSS tool4. Besides, after
filling out the questionnaire, the students had to give an overall grade to the course. This grade
represented the dependent variable, called general evaluation of the course. The same scale
was used.

In order to validate the reliability of the gathered data, we verified the Cronbach Alpha
index for every item of the constructs, and later of the whole construct. This index is a way to
measure the scale reliability, through the analysis of the homogeneity of the items that compose
the scale, i.e. it verifies the internal consistency of the questionnaire. It works by extracting
mean and std. deviation values from each variable independently, and next it is analyzed the
general measure of the construct. The results can be viewed in Table 3. In general, the indexes
suggest satisfactory reliability, presenting values higher than 0.8.

Table 3. Measures of Constructs
CONSTRUCT NUM. OF ITEMS ALPHA DE CRONBACH MEAN STD. DEV.
Course Evaluation 9 0.8055 6.53 2.38
Teaching Evaluation 12 0.8420 8.64 0.61

Next, we proceeded with a factor analysis, performed in order to assess the constructs
validity. The purpose of factor analysis is to discover simple patterns in the pattern of relation-
ships among the variables. In particular, it seeks to discover if the observed variables can be

4http://www.spss.com/



explained largely or entirely in terms of a much smaller number of variables called factors. Our
intention was to identify the analyzed factors that influenced the general grade the students gave
to the course. Tables 4 and 5 show the calculations for the rotations performed to the course con-
tent evaluation and the teaching evaluation, respectively. Items were grouped according to their
importance for each factor, e.g. in Table 4 the factor 1 was constructed emphasizing the items:
course expectancy, course content, material quality, interaction tut prof, content schedule and
aplic nec interest. The same idea was applied to the model presented in Table 5.

Table 4. Rotated Factor Matrix - Model 1 (Course Content Evaluation)
FACTORVARIABLE 1 2 3

knowledge c -2,973E-02 -,104 ,288
course expectancy ,910 ,115 -,107
course content ,679 ,330 2,683E-02
course difficulty ,215 ,975 -3,684E-02
material quality ,704 ,252 -,109
interaction tut prof ,692 ,108 -8,240E-02
course length 4,770E-02 ,225 ,973
content schedule ,742 ,168 8,229E-02
aplic nec interest ,391 -,117 5,805E-02
Explained variance 3,02 1,25 1,07
% of explained variance 33,52 13,92 11,90
% of cumulative explained variance 33,52 47,43 59,34

Table 5. Rotated Factor Matrix - Model 2 (Teaching Evaluation)
FACTORVARIABLE 1 2 3

professor punctuality ,258 ,368 ,118
professor knowledge ,138 5,087E-02 ,287
professor didactic ,189 ,864 ,129
professor communication ,123 ,987 9,631E-02
professor clear doubts ,193 ,726 ,198
professor schedule -8,309E-02 ,236 ,878
tutor punctuality ,396 ,106 ,289
tutor knowledge ,566 ,213 ,235
tutor didactic ,880 ,202 -1,063E-02
tutor communication ,893 ,268 -2,796E-02
tutor clear doubts ,888 8,506E-02 ,123
tutor schedule ,115 ,112 ,951
Explained variance 3,031 2,630 1,992
% of explained variance 25,256 21,913 16,601
% of cumulative explained variance 25,256 47,169 63,770

Multiple Regression analysis was performed, taking as dependent variable the value of
general evaluation of the course, and as independent variables all items prior presented in this
section. The goal of this analysis was to verify the relative importance of each of variables that
influenced on the general grade they gave to the course. Table 6 shows that regression model is
significant, with a R2 = 0.547, we can state that 54.7% of the total variance of the dependent
variable is explained by the regression equation. In general, the mean value for the course
evaluation was 7.818, as shown in Table 7. This value indicates that most students consider this
new approach as relevant and promising.

5. Lessons Learned
After conducting this new approach for 3 semesters, involving a dozens of students, we iden-
tified a set of points that need special attention, since we are intended to keep applying such a
new approach for the introductory programming course. The main points are:

Collaborative work. When the students have to work integrating their code with a dif-
ferent team, they present several problems: some of them do not engage in the code activities



Table 6. ANOVA calculations
MODEL SUM OF SQUARES DF MEAN SQUARE F SIG.
Regression 62,236 2 31,118 38,006 ,000b

Residual 51,583 63 ,819
Total 113,818 65
R =0.739, R-Square = 0.547, Adjusted R-Square = 0.532, Std. Error of the Estimate = 0.9

Table 7. Coefficients
UNSTAND. COEFF.* STAND. COEFF.*MODEL B STD. ERROR BETA

T SIG.

(Constant) 7,818 0,111 70,193 ,000
Content Evaluationb ,921 ,124 ,662 7,441 ,000
Schedule, Teaching Knowledge ,251 ,121 ,184 2,072 ,042

since some of them lead the activities in the group; they have difficulties to meet with all the
participants because of the different schedules. These problems are usually more visible in the
second and third iterations;

Commits and Defect reports. In some situations, a student submits a commit or defect
for a member of his group and it makes hard to analyze the data and identifies their participation
in the project. It might have happened because they could have network problems or other issue.
We indeed had the opportunity to gather information on the amount of errors found, etc, but we
rather can not make any inferences on such data, regarding individuals’ performance. Hence,
data collection should be improved;

Last specification. During all semesters, the last iteration is very problematic for the
students. They have several difficulties to work on a team with 20 members in one specification
and we noticed problems concerning to work assignment for each member, manage the im-
plementation progress, organize meetings with the whole team, code convention, and common
understanding and agreement for the final software. In some situations, they developed two
different versions for the system because of the difficulty on agreement.

6. Related Work
In [Van Scoy 1990], the authors present an Ada-based introductory computer science course
which introduces some basic SE concepts such as abstraction, information hiding, object-
oriented software development and reuse. [Prey et al. 1994] discusses an approach to intro-
duce SE concepts in the first computer science course based on code walkthrough and an
analysis of large software systems. At the University of California at Santa Cruz (UCSC),
the authors [Bevan et al. 2002] introduced pair programming into a freshman programming
classes to prepare students for the software development challenges. Our approach is closed
to [Van Scoy 1990]. However, we believe that our proposal is based on more solid SE funda-
mentals and the project setting defined in the approach allows exercising it systematically.

7. Concluding Remarks
SE education is a challenge for educators, mainly, aligning the industrial needs and the material
presented for students, as well as integrating programming and SE courses. In this paper, we
addressed the second issue proposing a new approach to teach an introductory computer pro-
gramming course based on a set of SE fundamentals. The approach allows students to practice
several concepts and the professor does not need to explain theoretical issues about it. The
approach has been used in our evaluation since 2009 and we believe that it can be useful for
achieving the defined goals.

As future work, we are considering to combine our approach for the computer program-
ming introduction course with the SE one. The idea is that students from the SE course based



on the classes related to project management and requirements engineering can work during the
project as the project managers and system analysts, in this way, they could manage the teams,
deadlines, assignments, and define the specification for the students in the computer program-
ming introduction course. Besides, evaluations considering not only the students feedback but
rather making correlations with their performance in courses held in the following semesters,
referring to SE, in order to identify opportunities for improvement.

Acknowledgements
This work was partially supported by the National Institute of Science and Technology for Soft-
ware Engineering (INES5), funded by CNPq and FACEPE, grants 573964/2008-4 and APQ-
1037-1.03/08 and CNPq grants 305968/2010-6, 559997/2010-8, 474766/2010-1.

References
Abran, A., Moore, J. W., Bourque, P., Dupuis, R., and Tripp, L. L. (2004). Guide to the Software

Engineering Body of Knowledge (SWEBOK). IEEE. ISO/IEC TR 19759.
Bevan, J., Werner, L., and McDowell, C. (2002). Guidelines for the use of pair programming

in a freshman programming class. In Proceedings of the 15th Conference on Software Engi-
neering Education and Training, Washington, DC, USA.

Boehm, B. (2006). A view of 20th and 21st century software engineering. In Proceedings of the
28th international conference on Software engineering, ICSE ’06, pages 12–29, New York,
NY, USA. ACM.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactoring: improving
the design of existing code. Addison-Wesley, Boston, MA, USA.

Harrold, M. J. (2000). Testing: a roadmap. In Proceedings of the Conference on The Future of
Software Engineering, ICSE ’00, pages 61–72. ACM.

Kernighan, B. W. and Ritchie, D. M. (1988). The C Programming Language, Second Edition.
Prentice-Hall, Englewood Cliffs, New Jersey.

Lutz, M. J. and Bagert, D. (2006). Guest editors’ introduction: Software engineering curriculum
development. IEEE Software, 23:16–18.

Parnas, D. L. (1979). On the criteria to be used in decomposing systems into modules, pages
139–150. Yourdon Press, Upper Saddle River, NJ, USA.

Prey, J. C., Cohoon, J. P., and Fife, G. (1994). Software engineering beginning in the first
computer science course. In Proceedings of the 7th SEI CSEE Conference on Software
Engineering Education, pages 359–374, London, UK. Springer-Verlag.

Scott, T. J. and Cross, II, J. H. (1995). Team selection methods for student programming
projects. In Proceedings of the 8th SEI CSEE Conference on Software Engineering Edu-
cation, pages 295–303, London, UK. Springer-Verlag.

Selby, R. W. (2007). Software Engineering: Barry W. Boehm’s Lifetime Contributions to Soft-
ware Development, Management, and Research (Practitioners). Wiley Press.

Shaw, M. (2000). Software engineering education: a roadmap. In Proceedings of the Confer-
ence on The Future of Software Engineering, ICSE ’00, pages 371–380. ACM.

Van Scoy, F. L. (1990). Introduction of software engineering concepts in an ada-based introduc-
tory computer science course. In Proceedings of the SEI conference on Software engineering
education, pages 67–76, New York, NY, USA. Springer-Verlag.

5http://www.ines.org.br/


